On the spectral and scattering properties of eigenparameter dependent discrete impulsive Sturm–Liouville equations
نویسندگان
چکیده
This work develops scattering and spectral analysis of a discrete impulsive Sturm-Liouville equation with parameter in boundary condition. Giving the Jost solution solutions this problem, we find function problem. Discussing properties function, solutions, asymptotic behavior solution, Green resolvent operator, continuous point spectrum Finally, give an example which main results are made explicit.
منابع مشابه
On the Spectrum of Eigenparameter-Dependent Quantum Difference Equations
We consider a boundary value problem (BVP) consisting of a second-order quantum difference equation and boundary conditions depending on an eigenvalue parameter. Discussing the point spectrum and using the uniqueness theorem of analytic functions, we present a condition that guarantees that this BVP has a finite number of eigenvalues and spectral singularities with finite multiplicities.
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملQuadratic eigenparameter-dependent quantum difference equations
The main aim of this paper is to construct quantum extension of the discrete Sturm–Liouville equation consisting of second-order difference equation and boundary conditions that depend on a quadratic eigenvalue parameter. We consider a boundary value problem (BVP) consisting of a second-order quantum difference equation and boundary conditions that depend on the quadratic eigenvalue parameter. ...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Mathematics
سال: 2021
ISSN: ['1303-6149', '1300-0098']
DOI: https://doi.org/10.3906/mat-2101-45